If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23=71/(x^2)
We move all terms to the left:
23-(71/(x^2))=0
Domain of the equation: x^2)!=0We get rid of parentheses
x!=0/1
x!=0
x∈R
-71/x^2+23=0
We multiply all the terms by the denominator
23*x^2-71=0
We add all the numbers together, and all the variables
23x^2-71=0
a = 23; b = 0; c = -71;
Δ = b2-4ac
Δ = 02-4·23·(-71)
Δ = 6532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6532}=\sqrt{4*1633}=\sqrt{4}*\sqrt{1633}=2\sqrt{1633}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1633}}{2*23}=\frac{0-2\sqrt{1633}}{46} =-\frac{2\sqrt{1633}}{46} =-\frac{\sqrt{1633}}{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1633}}{2*23}=\frac{0+2\sqrt{1633}}{46} =\frac{2\sqrt{1633}}{46} =\frac{\sqrt{1633}}{23} $
| 10d+4=2d-28 | | 10x-(3x-7)=28 | | 1/2x-5=x/4+3 | | 4(r-93)=24 | | 2(x-5)+4=2(2x+6) | | 90=5(d-70) | | 7x+35=9x-3 | | 16x-7=38 | | K+y3=51/8 | | (9x-11)+(10x-37)=123 | | 45b+28=9b | | (5p+2)=^2 | | 7x-1=x+7 | | 15-6x=5x+3 | | 7k+1=3k+9 | | 9a−3=15+3a | | 9m-15=47 | | 10y-1=5y+4 | | 187=t-704+59 | | 23=(x)/(1,76)^2 | | 4(3e+2)=32 | | 23=x/(1,76)^2 | | x+2x+30.5=180 | | 4w+2-w+6=4+2w | | (x+5)+(x+5)=19 | | 1246=510x-1,022,324 | | 4(3x-2)=113 | | 7+(7x+-2)=24 | | 74x+17=9 | | 72b-42=5 | | 4x*8=32 | | 6(x-8)=4(x+7 |